M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Bioinformatics

INTRODUCTION TO BIOINFORMATICS

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. What is Unix? (CO1, K2)
 - (a) Unix is a programming language
 - (b) Unix is a software program
 - (c) Unix is an operating system
 - (d) Unix is a text editor
- 2. Choose, which command is used to delete all files in a directory? (CO1, K1)
 - (a) del*
 - (b) rm*
 - (c) mv*
 - (d) rmdir*

3.	Wha	t is sequence ali	gnment	?	(CO2, K2)
((a)	The process of in a DNA seque		ining the ord	er of nucleotides
((b)	The process of or more sequen	-	ying similari	ties between two
((c)	The process of protein sequence		erting DNA	sequences into
((d)	The process of structure of a p		nining the tl	hree-dimensional
	In se indic	_	nt, wha	t does a high	alignment score (CO2, K2)
((a)	High sequence	similari	ity	
((b)	Low sequence s	imilarit	ty	
((c)	High sequence	length		
((d)	Low sequence le	ength		
5.]	Find	the following w	hich is a	a protein sequ	uence database (CO3, K1)
((a)	DDBJ	(b)	EMBL	
((c)	GenBank	(d)	PIR	
s. '	Wha	t are bioinforma	tics dat	abases?	(CO3, K2)
((a)	Repositories of	biologic	al samples	
((b)	Online platform	ns for sh	naring resear	ch papers
((c)	Resources that tools for analys		biological d	ata and provide
((d)	Platforms for co	onductin	ng laboratory	experiments
,					

3.

7.	Che	emDraw used to	(CO4, K2)
	(a)	Drawing a chemical structure	
	(b)	Vishivalization of structure	

- (c) Analysis the chemical structure
- (d) All the above
- 8. Which database provides information on scientific literature and research publications in the field of biology? (CO4, K1)
 - (a) GenBank (b) PubMed
 - (c) Uniprot (d) PDB
- 9. Find the following can be considered as major development in Community Health Nursing in terms of information technology? (CO5, K1)
 - (a) Medication dispensing
 - (b) Telehealth
 - (c) Patient Monitoring
 - (d) Prevention of epidemiological diseases through quality care
- 10. What is not included in stage 1 in the health informatics paradigm shift? (CO5, K2)
 - (a) Support from the client
 - (b) Commencing the project
 - (c) Collecting and analyzing the data
 - (d) Translate data into information

R0211

Answer all the questions not more than 500 words each. 11. Illustrate the Unix operating system. (CO1, K4) OrDiscuss the open source in bioinformatics. (CO1, K4) (b) 12. Write a short note on Multiple Sequence Alignment. (a) (CO2, K5) Or (b) Explain the Tools used for Sequence Alignment. (CO2, K4) 13. Give an account on Specialized Database. (CO3, K5) (a) Or(b) Explain the following: (CO3, K4) (i) Entrez TCCG Database. Discuss about the Cheminformatics 14. (CO4, K4) (a) OrExplain the CSD and PUBCHEM. (CO4, K4) (b) 15. (a) Describe about Medical Coding. (CO5, K5) Or(b) Discuss the Ethics in medical informatics. (CO5, K4) R0211

Part B

 $(5 \times 5 = 25)$

Part C

 $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Elaborate the basic commands of Windows, Linux and UNIX. (CO1, K5)

Or

- (b) Explain the concept of open resources in bioinformatics. (CO1, K4)
- 17. (a) Give an account on Biological background for sequence analysis. (CO2, K5)

Or

- (b) Discuss and Detailed about the sequence alignment. (CO2, K4)
- 18. (a) Explain about the Nucleic acid database and genome databases. (CO3, K4)

Or

- (b) Elaborate the Clinically relevant Drug-Drug Interactions Databases. (CO3, K5)
- 19. (a) Explain about structural isomers and structure visualization tool. (CO4, K4)

Or

(b) Outline cheminformatics tools used in biological science. (CO4, K5)

R0211

20. (a) Explain the informatics application of pharmacy; survey and evaluation of on-line resources. (CO5, K4)

Or

(b) Discuss the Pharmacy system and automation. (CO5, K4)

502102

 $(10 \times 1 = 10)$

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

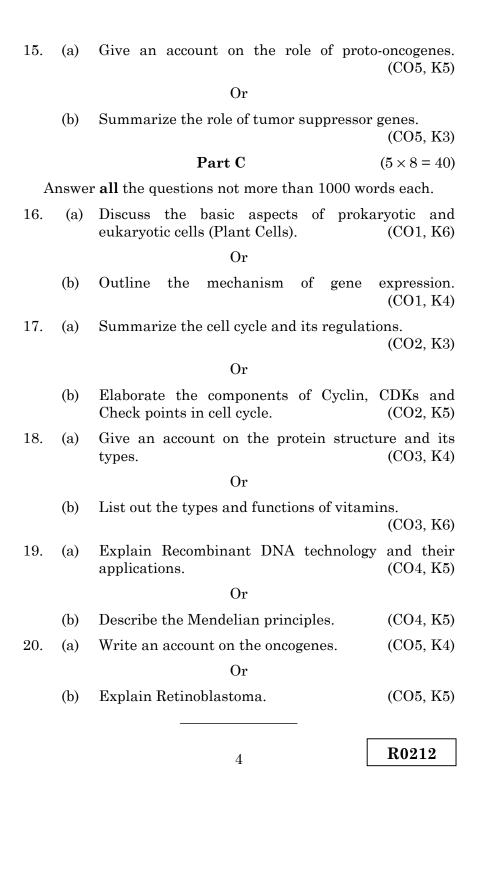
First Semester

Bioinformatics

MOLECULAR CELL BIOLOGY AND BIOCHEMISTRY

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks


Part A

Answer **all** the following objective questions by choosing the correct option.

- 1. What part do all prokaryotic and eukaryotic cells have? (CO1, K1)
 - (a) Organelles
 - (b) Nuclear Envelope
 - (c) Plasma Membrane
 - (d) Cell Wall
- 2. How does a typical prokaryotic cell compare in size to a eukaryotic cell? (CO1, K2)
 - (a) It is similar in size
 - (b) It is smaller in size by a factor of 100
 - (c) It is smaller in size by a factor of 1 million
 - (d) It is larger in size by a factor of 10
- 3. Meiosis is evolutionary significant because it results in (CO2, K1)
 - (a) Genetically Similar Daughters
 - (b) Four Daughter Cells
 - (c) Eggs And Sperms
 - (d) Recombinations

4.	Meio	sis crossing over	er is initia	ated at	(CO2, K1)
	(a)	Pachytene	(b)	Leptotene	
	(c)	Zygotene	(d)	Diplotene	
5.	Find prote		y occurri	ng form of am	ino acid in (CO3, K1)
	(a)	L-amino acids	only		
	(b)	D-amino acids	sonly		
	(c)	Both L and D $$	amino ac	ids	
	(d)	None of these			
6.	Whice macr	ch of the comolecules?	following	g biomolecules	are not (CO3, K2)
	(a)	Lipids	(b)	Nucleic acids	
	(c)	Proteins	(d)	Polysaccharides	
7.	Who	is known as th	e "Father	of Genetics"?	(CO4, K2)
	(a)	Morgan	(b)	Mendel	
	(c)	Watson	(d)	Bateson	
8.	The	alternate form	of a gene	is	(CO4, K1)
	(a)	Alternate type	е		
	(b)	Recessive char	racter		
	(c)	Dominant cha	racter		
	(d)	Allele			
9.		ch of the follow onvened to onco		ormal cellular ge	nes that can (CO5, K2)
	(a)	Proto-oncogen	ies		
	(b)	Oncogenes			
	(c)	Tumor suppre	essor gene	S	
	(d)	Cellular oncog	genes		
			2		R0212

(a) (b) (c) (d) mswe (a) (b)	Uncontrolled cell division Differentiation Apoptosis All of the above Part B er all the questions not more than 500 word Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells. Distinguish between mitosis and meiosis.	prokaryotic (CO1, K6)
(c) (d) nswe (a) (b)	Apoptosis All of the above Part B r all the questions not more than 500 work Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells.	ds each. prokaryotic (CO1, K6) aryotic and
(d) nswe (a) (b)	Part B or all the questions not more than 500 work Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells.	ds each. prokaryotic (CO1, K6) aryotic and
nswe (a) (b)	Part B or all the questions not more than 500 work Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells.	ds each. prokaryotic (CO1, K6) aryotic and
(a) (b)	or all the questions not more than 500 work Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells.	ds each. prokaryotic (CO1, K6) aryotic and
(a) (b)	Discuss the structural organization of and eukaryotic cells. Or Explain the genome organization of prokeukaryotic cells.	prokaryotic (CO1, K6) aryotic and
(b)	Or Explain the genome organization of prokeukaryotic cells.	(CO1, K6)
	Explain the genome organization of prokeukaryotic cells.	•
	eukaryotic cells.	•
(a)	Distinguish between mitosis and meiosis.	
	0	. (CO2, K4)
	Or	
(b)	Describe the structure and function of cer	ntrosomes. (CO2, K4)
(a)	Point out the classifications of biomolecul	les. (CO3, K3)
	Or	
(b)	List out the properties and biological f monosaccharides.	unctions of (CO3, K4)
(a)	Explain the host transcriptional modifica	tions. (CO4, K5)
	Or	
(b)	Write short notes on:	(CO4, K6)
	(i) Maternal inheritance of chloroplast	
	(ii) Sex-linked inheritance.	
	3	R0212
	(a) (b) (a)	Or (b) List out the properties and biological from monosaccharides. (a) Explain the host transcriptional modification Or (b) Write short notes on: (i) Maternal inheritance of chloroplast

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Bioinformatics

MATHEMATICS AND STATISTICS FOR BIOLOGISTS

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

1. Choose the correct option for the given matrix. (CO1, K1)

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 4 & 5 & 3 \end{bmatrix}$$

- (a) Lower triangle matrix
- (b) Upper triangle matrix
- (c) Diagonal matrix
- (d) Unit matrix
- 2. Choose the correct option and justify your choice:

(CO1, K2)

$$\frac{2\tan 30^{\circ}}{1+\tan^2 30^{\circ}}$$

- (a) sin 60°
- (b) $\cos 60^{\circ}$
- (c) tan 60°
- (d) sin 30°

the	numbers?			(CO2, K3)
(a)	10	(b)	70/5	
(c)	72/7	(d)	32/3	
Wh	ich of the follo	wing is me	asured by the	e Lorenz curve? (CO2, K2)
(a)	Illiteracy			
(b)	Unemploym	ent		
(c)	Population g	rowth rate	:	
(d)	Inequality of	f Income		
Ros	ster form is also	o known as	3:	(CO3, K1)
(a)	Set-builder f	orm		
(b)	Cardinality			
(c)	Tabular form	n		
(d)	None of thes	e		
As	per De Morgan	a's Law, (A	$\cup B$)' is equal	al to (CO3, K1)
(a)	$A' \cup B'$	(b)	A' + B'	
(c)	$(A \cap B)$ '	(d)	$A' \cap B$	
		2		R0213

7.	falli		om cori		n a straight line tht upper corner, (CO4, K3)
	(a)	Zero correlation	n		
	(b)	High degree of	positive	correlation	
	(c)	Perfect negativ	e correl	ation	
	(d)	Perfect positive	e correla	ation	
8.		regression anal licted is	lysis, t	he variable	that is being (CO4, K2)
	(a)	Independent va	ariable		
	(b)	Response, or de	ependen	t, variable	
	(c)	Intervening va	riable		
	(d)	is usually x			
9.		lysis of variance everal population		atistical meth	nod of comparing (CO5, K2)
	(a)	Means			
	(b)	Variance			
	(c)	Standard Devia	ation		
	(d)	The T-Test			
10.	esti				nfidence interval two population (CO5, K3)
	(a)	2.58	(b)	2.33	
	(c)	1.96	(d)	1.78	
			3		R0213

Part B

 $(5 \times 5 = 25)$

Answer all questions not more than 500 words each.

11. (a) If $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ find $A^2 - 7A - 2I$. (CO1, K2)

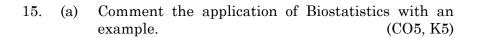
Or

- (b) Differentiate $\frac{\sin x + \cos x}{\sin x \cos x}$ with respect to x (CO1, K2)
- 12. (a) State the rules for diagrammatic representations. (CO₂, K₂)

Or

- (b) The amount of rainfall in a particular season for 6 days are 17.8 cm, 19.2 cm, 16.3 cm, 12.5 cm, 12.8cm and 11.4cm. Find its standard deviation. (CO2, K3)
- 13. (a) Define and Describes about Student's T-test. (CO3, K3)

Or


- (b) Distinguish the relationship between Normal and Poisson distribution. (CO3, K4)
- 14. (a) Summarizes the various types of correlation. (CO4, K2)

Or

(b) State the assumptions and methods of Karl Pearson's coefficient of correlation. (CO4, K3)

4

R0213

Or

(b) Elaborate the confidence interval in Statistics.

(CO5, K4)

Part C $(5 \times 8 = 40)$

Answer all questions not more than 1000 words each.

16. (a) Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, verify that the eigen values of A² are the squares of those of A. (CO1, K2)

Or

- (b) Using vector method proves that the medians of a triangle are concurrent. (CO1, K3)
- 17. (a) The following data is the marks in statistics obtained by 100 students in a class. Calculate the median (CO2, K4)

80-89 Marks 10-19 20-29 30-39 40-49 70-79 50-59 60-69 4 No. of students 12 9 30 5 21 13

Or

- (b) Explain the methods to reduce sampling and non-sampling errors. (CO2, K3)
- 18. (a) Compare the relationship between Type I and Type II errors. (CO3, K4)

Or

(b) Write an account on Bayes theorem with suitable example. (CO3, K3)

R0213

19. (a) Classify the various types of Correlation in detail. (CO4, K2)

Or

- (b) Interpret a Spearman Rank Correlation with an example. (CO4, K4)
- 20. (a) Discuss any one computer software package used for statistical analysis in detail. (CO5, K5)

Or

(b) Discuss the differences, assumptions and hypotheses of ANOVA. (CO5, K6)

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Bioinformatics

Elective: GENERAL CHEMISTRY

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. Choose the correct pyramidal shape? (CO1, K2)
 - (a) SO₃
- (b) PCl₃
- (c) CO₃²-
- (d) NO³⁻
- 2. Find which substance that react with both acids and bases are called (CO1, K1)
 - (a) Neutral
 - (b) Conjugate bases
 - (c) Amphoteric substances
 - (d) Conjugate acids

3.		t is the name of ula C ₆ H ₇ N?	the	compound v	vith th	e chemical (CO2, K2)
	(a)	Phenol	(b)	Aniline		
	(c)	Pyridine	(d)	Benzene		
4.	Choo	ose the following co	mpo	unds is not a	aromati	c? (CO2, K2)
	(a)		(b)			
	(c)		(d)	8		
5.		out the one of the		lowing exam	ples co	omes under (CO3, K1)
	(a)	Nickel	(b)	${ m SiO_2}$		
	(c)	Silicon	(d)	None of th	e above	e
6.	Idea	l characteristics of	targ	eted drug de	livery s	system (CO3, K2)
	(a)	Nanotoxic and bio	degr	adable		
	(b)	Biocompatible and	d phy	ysicochemica	ılly stal	ole
	(c)	Predictable and co	ontro	ollable rate o	f drug	release
	(d)	all of the above				
			2			R0214

	(a)	Metabolism	(b)	Anabolism		
	(c)	Oxidation	(d)	Reduction		
8.		tify the function	of	hemoglobin	and	the metal (CO4, K1)
	(a)	O2 transport and I	Fe			
	(b)	O2 transport and O	Cu			
	(c)	Electron transport	t and	d Fe		
	(d)	Electron transport	t and	d Cu		
9.	Selec	ct the following is n	ot a	classification	of dr	ugs
						(CO5, K2)
	(a)	Based on size				
	(b)	Based on chemical	l str	ucture		
	(c)	Based on drug act	ion			
	(d)	Based on target				
10.	Anti	biotics are used to t	reat	infections by	7	(CO5, K2)
	(a)	Virus				
	(b)	Bacteria				
	(c)	All the microorgan	nism	s		
	(d)	None of the above				
			3			R0214

Loss of electrons can be termed as

7.

(CO4, K2)

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) Summarize the major types of chemical bond.

(CO1, K4)

Or

(b) Principle of HSAB. (CO1, K3)

12. (a) Explain about Grignard Synthesis. (CO2, K4)

Or

(b) Discuss the Beer Lambert's Law. (CO2, K4)

13. (a) Write a note on properties of carbon nanotubes.

(CO3, K5)

Or

(b) Give a account on synthesis of PVP. (CO3, K4)

14. (a) Describe the structure and functions of Hemerythrin. (CO4, K5)

Or

- (b) Details about electron transfer proteins of Ferredoxins. (CO4, K5)
- 15. (a) Discuss the any three antibiotic drugs. (CO5, K4)

Or

(b) Explain in detail about the cis-platin. (CO5, K4)

R0214

Answer all the questions not more than 1000 words each.

16. (a) Elaborate the MO theory of homodiatomic molecules C_{2} . (CO1, K4)

Or

- (b) Explain in detail about with examples of following; (CO1, K4)
 - (i) Resonance
 - (ii) Conjugation
 - (iii) Delocalization
 - (iv) Hyperconjugation.
- 17. (a) Write a account on following (CO2, K5)
 - (i) Pyrrole
 - (ii) Thiophene
 - (iii) Furan.

Or

- (b) Write a note on infra-red spectroscopy technique. (CO2, K4)
- 18. (a) Classification nanomaterials and examples. (CO3, K5)

Or

(b) Any three preparation and uses of synthetic fibres.

(CO3, K5)

R0214

19. (a) Elaborate a structure and functions of Hemoglobin. (CO4, K5)

Or

- (b) Explain in detail about the vitamin B12. (CO4, K4)
- 20. (a) Any three Fungal drugs mode of action and side effects. (CO5, K4)

Or

(b) Discuss about the antiviral and anticancer agents. (CO5, K5)

502301

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Bioinformatics

GENETICS AND GENETIC ENGINEERING

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

 $\mathbf{Part} \mathbf{A} \qquad (10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

1. The physical appearance of an organism is called:

(CO1, K2)

- (a) Phenotype
- (b) Genotype
- (c) Allele
- (d) Dominance
- 2. When one allele is completely masked by the other allele is called: (CO1, K1)
 - (a) Incomplete dominance
 - (b) Co-dominance
 - (c) Dominance
 - (d) Recessiveness
- 3. The process by which DNA is copied is called (CO2, K2)
 - (a) Transcription
 - (b) Translation
 - (c) Replication
 - (d) Transcription and translation

4.	The	mRNA is produce	ed by:		(CO2, K2)
	(a)	Transcription	(b)	Translation	
	(c)	Replication	(d)	None of the abo	ve
5.	The	Gene expression f	first oc	curs at the:	(CO3, K1)
	(a)	Genome level	(b)	DNA level	
	(c)	RNA level	(d)	Protein level	
6.	The	Splicing of intron	s from	mRNA occurs in:	(CO3, K1)
	(a)	Prokaryotes			
	(b)	Eukaryotes			
	(c)	Both prokaryote	s and e	eukaryotes	
	(d)	None of the above	ve		
7.	The	Transformation w	vas firs	st demonstrated i	n: (CO4, K2)
	(a)	E. $coli$	(b)	Yeast	
	(c)	Fruit fly	(d)	Tobacco mosaic	virus
8.	The	Conjugation invol	lves th	e transfer of DNA	A via: (CO4, K1)
	(a)	Transduction	(b)	Transformation	L
	(c)	Conjugation	(d)	Transfection	
9.	The	first transgenic p	lant wa	as produced by:	(CO5, K2)
	(a)	Hybridization			
	(b)	Somaclonal vari	ation		
	(c)	Anther and micr	rospore	culture	
	(d)	Agrobacterium-r	nediat	ed transformation	n
10.	The	CRISPR is a tech	nique 1	used for:	(CO5, K2)
	(a)	Splicing	(b)	Gene silencing	
	(c)	Gene editing	(d)	DNA sequencin	g
			o		R0215
			2	l	

Answer all the questions not more than 500 words each.

11. (a) Point out the Definition and scope of Genetics. (CO1, K4)

Or

- (b) Describe the Mendel's experiments and Law of segregation. (CO1, K3)
- 12. (a) Compare and discuss the structure and organization of human chromosomes and mitochondria. (CO2, K5)

Or

- (b) Differentiate between the ABO blood group system and Rh factor in humans. (CO2, K6)
- 13. (a) Explain post-transcriptional modifications. (CO₃, K₄)

Or

- (b) Write a short note on mechanisms of genome alterations with suitable examples. (CO3, K3)
- 14. (a) Summarize the principles of Hardy Weinberg equilibrium. (CO4, K4)

Or

- (b) Explain the concept and applications of linkage mapping in humans examples. (CO4, K4)
- 15. (a) Demonstrate Agrobacterium-mediated plant transformation. (CO5, K6)

Or

(b) Point out the applications of genetic engineering in transgenic crops. (CO5, K5)

R0215

Answer all the questions not more than 1000 words each.

16. Briefly summarize the key differences between Mendelian genetics and multi-factorial inheritance.

(CO1, K4)

Or

(b) Differentiate between autosomal dominant and autosomal recessive patterns of inheritance.

List out the various types of mutations and their 17. (a) effects on phenotype with suitable examples.

Or

- (b) Give an account on deviations from Mendelism with (CO2, K5) one suitable example.
- 18. (a) Compare and contrast the prokaryotic and eukaryotic genome organization and mechanisms of gene expression. (CO3, K6)

Or

(b) Explain the methods used for studying gene expression and regulatory sequences with examples.

(CO3, K5)

19. Give an account on the methods of genetic transfer (a) bacteria-transformation, conjugation transduction with examples. (CO4, K3)

- (b) Write a short note on the concept of genetic variations and polymorphism at the genome level. (CO4, K6)
- applications of plant genetic 20. (a) out the engineering in developing abiotic and biotic stress resistance in plants. (CO5, K5)

(b) Explain the biosafety role of genetic engineering and transgenic products. (CO5, K5)

R0215

502302

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Bioinformatics

STRUCTURAL BIOLOGY

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

 $\mathbf{Part} \mathbf{A} \qquad (10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. Choose the triclinic crystal system parameter (CO1, K1)
 - (a) $\alpha \neq b \neq c \& \alpha \neq \beta \neq \gamma$
 - (b) $\alpha \neq b \neq c \& \alpha = \beta = \gamma$
 - (c) $\alpha \neq b \neq c \& \alpha = \gamma = 90; \beta \neq 90$
 - (d) $\alpha = b = c \& \alpha = \beta = \gamma$
- 2. Which one of the following exhibits the most well defined X-ray diffraction pattern? (CO1, K2)
 - (a) A polycrystalline aggregate
 - (b) A single crystalline material
 - (c) An amorphous material
 - (d) A plastically deformed crystal
- 3. How many possible orientations can a spin 1 nuclei adopt when placed in an applied magnetic field? (CO2, K2)
 - (a) 1

(b) 2

(c) 3

(d) 4

Ont	cical fiber works	on the ni	nanomanon of	£
Opt	TCAI IIDEI WOLKS	on me bi	renomenon 0	(CO2, K1)
(a)	Total internal	reflection	n	
(b)	Diffraction			
(c)	Polarization			
(d)	Refraction			
Wh	y is crystal grow	th impor	tant?	(CO3, K1)
(a)	Increase the va	alue of th	ne product	
(b)	Information ab	out the	structure	
(c)	Increase the si	ze of the	compound	
(d)	Information re	garding	the quality of	f product
	ay diffractometer perties of which o			ntify the physical (CO3, K2)
(a)	Metals			
(b)	Liquids			
(c)	Polymeric mat	erials		
(d)	Solids			
Wh	at is a bond betw	een ami	no acids calle	ed? (CO4, K1)
(a)	Ionic bond	(b)	Acidic bond	
(c)	Peptide bond	(d)	Hydrogen b	ond
	ich of the follow molecular weigh			
(a)	SDS-PAGE on	ly		
(b)	Mass spectrom	etry only	y	
(c)	Analytical SEC	Conly		
(d)	All of the abov	e		
	w many bonded			
	edral (torsion) ar	0 - /		
	edral (torsion) an 2	(b)	3	
dih		_	3 5	

10.		th type of proteins residues are usually found on the acce of the protein in contact with the aqueous ent? (CO5, K2)
	(a)	Nonpolar residues
	(b)	Charged polar residues
	(c)	Hydrophobic residues
	(d)	Uncharged polar residues
		Part B $(5 \times 5 = 25)$
A	Answe	r all the questions not more than 500 words each.
11.	(a)	Explain the Bravais Lattices. (CO1, K5)
		Or
	(b)	Derive Bragg's law equation. (CO1, K6)
12.	(a)	Explain powder diffraction and its application. (CO2, K5)
		Or
	(b)	Explain: Synchrotron radiation. (CO2, K5)
13.	(a)	Difference between the small molecule and macromolecule give five points. (CO3, K4)
		Or
	(b)	Derive Fourier refinement. (CO3, K6)
14.	(a)	Different type of crystallization method in macromolecule. (CO4, K4)
		Or
	(b)	Explain protein folding. (CO4, K5)
15.	(a)	Explain planarity and chirality. (CO5, K5)
		Or
	(b)	Explain the internal geometry of molecule.(CO5, K5)
		3 R0216

Part C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Define phase problem. How to solve? (CO1, K3)

Or

- (b) Elaborate seven crystal system and it's parameters with the diagram. (CO1, K6)
- 17. (a) Cryo- Electron Microscopy and its application in structural biology. (CO2, K4)

Or

- (b) Elaborate NMR technology and its importance in structural biology. (CO2, K6)
- 18. (a) Small Molecule structure solving and refinement methods. (CO3, K4)

Or

- (b) Single crystal X-ray data collection and data reduction. (CO3, K5)
- 19. (a) Explain:

(CO4, K5)

- (i) Protein structure analysis and validation.
- (ii) Ramachandran plot.

Or

- (b) SAD and MAD method protein structure determination. (CO4, K6)
- 20. (a) Application of X-ray crystallography in drug design. (CO5, K6)

Or

(b) Explain: primary secondary, tertiary and quaternary structures with diagram (CO5, K5)

R0216

502303

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Bioinformatics

PHARMACOGENOMICS

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. It is a database contains information on known genetic variations and their association with diseases? (CO1, K2)
 - (a) GenBank
- (b) dbSNP
- (c) ENCODE
- (d) FlyBase
- 2. Which of the following is an example of Homology and Similarity tool? (CO1, K1)
 - (a) BLAST
- (b) EMBOSS
- (c) RasMol
- (d) PROSPECT
- 3. Identify the most commonly referred variant in human genome? (CO2, K2)
 - (a) Defective gene splicing
 - (b) Premature stop codon
 - (c) Nucleotide base insertion
 - (d) Single-nucleotide polymorphism

- 4. What are the four main processes of pharmacokinetics? (CO2, K2)
 - (a) Absorption, dissemination, mechanism, excretion
 - (b) Adaptation, distribution, medical, exclusion
 - (c) Absorption, distribution, metabolism, excretion
 - (d) Alignment, digestion, movement, execution
- 5. CYP2D6 polymorphism associated with following property of drug discovery mechanism (CO3, K4)
 - (a) Drug delivery
 - (b) Toxicity
 - (c) Drug interaction potential
 - (d) All of these
- 6. Which of the following is the correct definition of bioavailability? (CO3, K3)
 - (a) Bioavailability describes the proportion of the drug administered that is metabolised very quickly and thus is not available to induce a physiological effect
 - (b) Bioavailability describes the ability of the administered drug metabolites to cause undesirable physiological effects
 - (c) Bioavailability is used to describe the fraction of the dose of drug administered that is present within the body and facilitates the desired physiological effects
 - (d) Bioavailability is the length of time an administered drug is present in the body and thus is available to cause a physiological effect

R0217

7.	Who	t results would y	011 03	rnoet in s	natio	nt who is a
1.		t results would y 2D6 ultra rapid me		-	-	
	(CO4, K6)					
	(a)	Lower than not morphine and tox		plasma	conce	ntrations of
	(b)	Lower than not morphine and lack		-	conce	ntrations of
	(c)	Higher than no morphine and tox		plasma	conce	ntrations of
	(d)	Higher than no morphine and lack		-	conce	ntrations of
8.		ch one of the follow Jext Generation Sec		-	uld be	best suitable (CO4, K2)
	(a)	To determine if a missense mutation		or sample	contai	ns a common
	(b)	To find the transcriptome of a tumor sample				
	(c)	To genotype ten genomic DNA samples for a known single nucleotide polymorphism				
	(d)	All of the above				
9.	A Patient has two "no function" allele variants for CYP2D6. Which anticancer drug may not be a good option for this patient? (CO5, K5)					
	(a)	Letrozole	(b)	Tamoxife	en	
	(c)	Fulvestrant	(d)	Exemest	ane	
10.	Which of the following is a cancer database? (CO5, K1)					
	(a)	TCGA	(b)	CRDB		
	(c)	OncoDB	(d)	All of the	e above	
			3			R0217

Answer all the questions not more than 500 words each.

11. (a) Give an account on OMIM database; Write key applications of OMIM. (CO1, K2)

Or

- (b) Elaborate Gene expression Profiling with suitable note. (CO1, K1)
- 12. (a) Describe the influence of polymorphisms in drug targets. (CO2, K3)

Or

- (b) Explain the comparison the genome of two different species, briefly explain with suitable note. (CO2, K3)
- 13. (a) Summarizes the role of SNPs on genetic disease also lists the types of SNPs. (CO3, K2)

Or

- (b) Discuss Drug efficacy in the context of dose-response curve. (CO3, K3)
- 14. (a) Write a short note on Mechanism and applications of SNP array in genetic diagnosis. (CO4, K4)

Or

- (b) Compare and Interpret the Next Generation Sequencing techniques. (CO4, K5)
- 15. (a) Evaluate the importance of any one cancer specific database in cancer research. (CO5, K6)

Or

(b) Illustrate the applications of cancer genomics in the cancer therapy. (CO5, K5)

R0217

Answer all the questions not more than 1000 words each.

16. (a) List out the regulatory regions present in the genome? How it associated with gene expression? (CO1, K1)

Or

- (b) Bioinformatics has developed lots of Resources and Repositories. Elaborate the bioinformatics platforms used in Pharmacogenomics studies. (CO1, K2)
- 17. (a) Why unequal absorption of drug occurred to patients? Explain in the context of structural influence. (CO2, K4)

Or

- (b) Evaluate the significance of comparative genomics in drug designing research. (CO2, K2)
- 18. (a) Personalized medicine is need of society why? Elaborate. (CO3, K6)

Or

- (b) Illustrate the Pharmacokinetics and Pharmacodynamics parameters calculated during the drug development process. (CO3, K3)
- 19. (a) NGS become backbone of Pharmacogenomics; explain the applications of NGS in genomic and pharmacogenomics studies. (CO4, K5)

Or

(b) Compare and relate the types of microarray in gene expression analysis. (CO4, K3)

R0217

20. (a) Propose your opinion on the need of personalized medicine in Cancer management. (CO5, K6)

Or

(b) Justify the role of copy number variation in cancer prognosis and its detection using computational methods. (CO5, K2)

R0217

502508

M.Sc. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Bioinformatics

Elective: PROGRAMMING IN C AND C++

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

 $\mathbf{Part} \mathbf{A} \qquad (10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct options.

- 1. In C, which operator is used to access the value stored at the address of a pointer variable? (CO1, K2)
 - (a) *

(b) &

- (c) ->
- (d) \$
- 2. Which of the following is a valid way to comment a single line in C? (CO1, K2)
 - (a) /* This is a comment*/
 - (b) # This is a comment
 - (c) // This is a comment
 - (d) 'This is a comment
- 3. Which operator is used to allocate memory dynamically in C? (CO2, K3)
 - (a) malloc()
- (b) allocate()
- (c) new
- (d) allocate_memory()

4.	What is the purpose of the break statement in a switch statement in C? (CO2, K3)					
	(a)	To exit the entire program				
	(b)	To exit the current iteration of a loop				
	(c)	To exit the switch statement and continue with the next case				
	(d)	To exit the switch statement and return to the calling function				
5.	How do you access a member variable of a structure in C ? (CO1, K2)					
	(a)	Using the dot operat	or (.)			
	(b)	Using the arrow operator (->)				
	(c)	Using the percent (%) symbol				
	(d)	Using the exclamation mark (!)				
6.	What is the size of a union in C? (CO1, K2)					
	(a)	The size of the largest member variable				
	(b)	The sum of the sizes of all member variables				
	(c)	The size of the smallest member variable				
	(d)	It depends on the compiler				
7.	What is the purpose of the c in object in C++? (CO1, K2)					
	(a)	To display output on the console				
	(b)	To read input from the keyboard				
	(c)	To perform mathematical calculations				
	(d)	To define classes				
8.	Which of the following operators is used for memory allocation in C++? (CO2, K3)					
	(a)	malloc() (k	o) allocate()			
	(c)	new (d	d) memory()			
		:	2	R0218		

9.		What is the purpose of dynamic memory allocation in C++ using pointers? (CO2, K2)				
	(a)	To allocate memory on the stack				
	(b)	To allocate memory at compile time				
	(c)	To allocate memory on the heap				
	(d)	To allocate memory for global variables				
10.	What is the purpose of the constructor in a C++ class? (CO2, K2)					
	(a)	To destruct objects				
	(b)	To initialize objects				
	(c)	To return a value				
	(d)	To perform mathematical calculations				
		Part B	$(5 \times 5 = 25)$			
P	Answe	er all the questions not more than 500 wor	ds each.			
11.	(a)	Illustrate the structure of C.	(CO1, K2)			
	Or					
	(b)	Classify the data types in C.	(CO1, K2)			
12.	(a)	Elaborate 1D array with example.	(CO2, K3)			
		Or				
	(b)	How to allocate memory? Explain.	(CO5, K5)			
13.	(a)	Compare Structure and Union in C.	(CO5, K5)			
		Or				
	(b)	Discuss briefly about file operation mode	es.(CO4, K4)			
14.	(a)	Illustrate the feature in C++.	(CO1, K2)			
		Or				
	(b)	Compare Break and Continue Statement	t. (CO5, K5)			
		3	R0218			

15.	(a)	Construct the class in C++ with example. (CO2, K3)					
		Or					
	(b) Discuss briefly about 'this' pointer.		(CO4, K2)				
		Part C	$(5 \times 8 = 40)$				
	Answer all questions not more than 1000 words each.						
16.	(a)	cample. (CO1, K2)					
	Or						
	(b)	Construct branching statement in C.	(CO2, K2)				
17.	(a)	Discuss about storage classes in C.	(CO4, K2)				
	Or						
	(b)	Elaborate about C preprocessor.	(CO4, K2)				
18.	(a)	Construct structure with suitable examp	le. (CO2, K3)				
Or							
	(b)	Discuss various input operations in file.	(CO4, K2)				
19.	(a)	Explain in detail about OOPs Concept.	(CO1, K2)				
Or							
	(b)	Create a C++ program using For loop.	(CO4, K3)				
20.	(a)	Compare call by value and call by reference example.	erence with (CO5, K4)				
	(b)	Discuss about templates in detail.	(CO4, K2)				
		4	R0218				